Grouping Library Book Collection Based On Old Book Borrowers With Clustering Method (Case study: STMIK Kaputama)

Authors

  • Sumartika Br Hutasoit STMIK Kaputama Binjai, Indonesia
  • Budi Serasi Ginting STMIK Kaputama Binjai, Indonesia
  • Fuzi Yustika Manik STMIK Kaputama Binjai, Indonesia

DOI:

https://doi.org/10.55227/ijhet.v1i2.36

Keywords:

Datamining, Library, K-Means Algorithm

Abstract

Libraries are institutions that collect printed and recorded knowledge. Books can be borrowed at the library for a length of time according to library regulations. Based on observations that some types of books in the library of STMIK Kaputama have a very high ratio of the number of borrowers, while the availability of books is limited. The addition of new book collections cannot be done because the storage capacity of the collection is limited. Based on these conditions, the grouping of book collections based on the length of book borrowing is carried out to optimize the service time for borrowing books. This application was created to assist librarians in determining the optimal length of book borrowing. So in this case, we will design and build a system that will be used in grouping library book collections based on the length of borrowing and the variables determined using the clustering method. The purpose of this research is to design and build a system for grouping library book collections in order to produce information quickly about the availability of books in the library. 

Downloads

Download data is not yet available.

References

Adi Nugroho. (2005), Analisis dan perancangan sistem informasi dengan metodologi berorientasi objek.Bandung: Informatika

B, Indra Yatini. (2010). Flowchart, Algoritma dan Pemrogaman Menggunakan Bahasa C++ Builder. Yogyakarta : Penerbit Graha Ilmu.

Enke, D. & Mehdiyev, N.. (2014). A Hybrid Neuro Fuzzy Model to Forecast Inflation. Procedia Computer Science. 36. (254-260).

Hend. (2006). Pengertian Unified Modeling Language (UML). Dipetik Oktober 05, 2015, dari http://adwintaactivity.blogspot.co.id/2012/04/definisiunified-modeling-language-uml.htML.

Maulia, S., Serasi Ginting, B., & Sihombing, A. (2021). IMPLEMENTASI DATA MINING PENGELOMPOKAN JENIS PENYAKIT PASIEN MENGGUNAKAN METODE CLUSTERING (STUDI KASUS : PUSKESMAS SAMBIREJO). JIK), 5(1).

Nugraha, D. D. C., Naimah, Z., Fahmi, M., & Setiani, N. (2014). Klasterisasi Judul Buku dengan Menggunakan Metode K-Means. Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Yogyakarta, 21(1).

Prasetyo, Eko. 2014. Data Mining. Yogyakarta: Andi Offset.

Prasetyo, Eko. (2013). Data Mining Konsep Dan Aplikasi Menggunakan Matlab. Yogjakarta: Penerbit Andi.

Santosa, B. 2007. Data Mining Terapan dengan MATLAB. Graha Imu. Yogyakarta

Silalahi, N. (2020). Penentuan Strategi Promosi Universitas Budi Darma Menggunakan Algoritma

K-Means Clustering. Terapan Informatika Nusantara, 1(1), 40–46.

Yahyono. Yoyo. 2007. Makalah Layanan Perpustakaan dan Informasi (Layana Bahan Pustaka). Jakarta : Perpustakaan Nasional RI

Downloads

Published

2024-09-30

How to Cite

Sumartika Br Hutasoit, Budi Serasi Ginting, & Fuzi Yustika Manik. (2024). Grouping Library Book Collection Based On Old Book Borrowers With Clustering Method (Case study: STMIK Kaputama). International Journal of Health Engineering and Technology (IJHET), 3(3). https://doi.org/10.55227/ijhet.v1i2.36