Grouping Library Book Collection Based On Old Book Borrowers With Clustering Method (Case study: STMIK Kaputama)
DOI:
https://doi.org/10.55227/ijhet.v1i2.36Keywords:
Datamining, Library, K-Means AlgorithmAbstract
Libraries are institutions that collect printed and recorded knowledge. Books can be borrowed at the library for a length of time according to library regulations. Based on observations that some types of books in the library of STMIK Kaputama have a very high ratio of the number of borrowers, while the availability of books is limited. The addition of new book collections cannot be done because the storage capacity of the collection is limited. Based on these conditions, the grouping of book collections based on the length of book borrowing is carried out to optimize the service time for borrowing books. This application was created to assist librarians in determining the optimal length of book borrowing. So in this case, we will design and build a system that will be used in grouping library book collections based on the length of borrowing and the variables determined using the clustering method. The purpose of this research is to design and build a system for grouping library book collections in order to produce information quickly about the availability of books in the library.
Downloads
References
Adi Nugroho. (2005), Analisis dan perancangan sistem informasi dengan metodologi berorientasi objek.Bandung: Informatika
B, Indra Yatini. (2010). Flowchart, Algoritma dan Pemrogaman Menggunakan Bahasa C++ Builder. Yogyakarta : Penerbit Graha Ilmu.
Enke, D. & Mehdiyev, N.. (2014). A Hybrid Neuro Fuzzy Model to Forecast Inflation. Procedia Computer Science. 36. (254-260).
Hend. (2006). Pengertian Unified Modeling Language (UML). Dipetik Oktober 05, 2015, dari http://adwintaactivity.blogspot.co.id/2012/04/definisiunified-modeling-language-uml.htML.
Maulia, S., Serasi Ginting, B., & Sihombing, A. (2021). IMPLEMENTASI DATA MINING PENGELOMPOKAN JENIS PENYAKIT PASIEN MENGGUNAKAN METODE CLUSTERING (STUDI KASUS : PUSKESMAS SAMBIREJO). JIK), 5(1).
Nugraha, D. D. C., Naimah, Z., Fahmi, M., & Setiani, N. (2014). Klasterisasi Judul Buku dengan Menggunakan Metode K-Means. Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Yogyakarta, 21(1).
Prasetyo, Eko. 2014. Data Mining. Yogyakarta: Andi Offset.
Prasetyo, Eko. (2013). Data Mining Konsep Dan Aplikasi Menggunakan Matlab. Yogjakarta: Penerbit Andi.
Santosa, B. 2007. Data Mining Terapan dengan MATLAB. Graha Imu. Yogyakarta
Silalahi, N. (2020). Penentuan Strategi Promosi Universitas Budi Darma Menggunakan Algoritma
K-Means Clustering. Terapan Informatika Nusantara, 1(1), 40–46.
Yahyono. Yoyo. 2007. Makalah Layanan Perpustakaan dan Informasi (Layana Bahan Pustaka). Jakarta : Perpustakaan Nasional RI
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Health Engineering and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.